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Jordanian quantum groupsGLh,g(2) and SLh(2) and
quantum Lie algebras
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Department of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews,
Fife KY16 9SS, UK
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Abstract. Assuming that the bicovariant bimodules are generated as left modules by the
differentials of the quantum group generators we classify all four-dimensional first-order
bicovariant calculi on the Jordanian quantum groupGLh,g(2) and all three-dimensional first-
order bicovariant calculi on the Jordanian quantum groupSLh(2). It is found that there are
three one-parameter families of four-dimensional bicovariant first-order calculi onGLh,g(2) and
that there is a single, unique, three-dimensional bicovariant calculus onSLh(2). This three-
dimensional calculus may be obtained through a classical-like reduction from any one of the
three families of four-dimensional calculi onGLh,g(2). Details of the higher order calculi and
also the quantum Lie algebras are presented for all calculi. The quantum Lie algebra obtained
from the bicovariant calculus onSLh(2) is shown to be isomorphic to the quantum Lie algebra
we obtain as an ad-submodule within the Jordanian universal enveloping algebraUh(sl2(C))
and also through a consideration of the decomposition of the tensor product of two copies of
the deformed adjoint module. We also obtain the quantum Killing form for this quantum Lie
algebra.

1. Introduction

The programme of noncommutative geometry pioneered by Connes [1, 2] is based on
fundamental results in the field of abstract analysis discovered in the first half of this
century by Gelfand, Kolmogoroff, Naimark, Stone and others (a useful historical overview
can be found in Segal’s review [3] of Connes’ book [1]). In particular, Gelfand and
Kolmogoroff showed that for a locally compact space, the algebra of continuous functions
on the space is essentiallyequivalentto the space itself. The algebra of continuous functions
is of course commutative, and in fact aC∗-algebra. We can then reasonably consider the
study of noncommutativeC∗-algebras as some form of noncommutative geometry. Thus
the essential idea is to express the formalism of classical geometry as far as possible in the
language of commutative algebra, and then use this as the paradigm for generalizing to the
noncommutative setting.

An implementation of this programme has been developed by Dubois-Violette and co-
workers (see the book by Madore [5], and the references therein). They generalize an
elegant algebraic approach to the differential geometry of a smooth manifold introduced by
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Koszul [4] to the case where the commutative algebra of smooth functions on the manifold
is replaced by the noncommutative algebra of matrices over some field.

In another direction, quantum groups provide natural candidates for noncommutative
generalizations of the algebras of smooth functions on classical compact Lie groups.
Classically the algebra ofrepresentative functionsis a dense subalgebra of the algebra of all
smooth complex-valued functions on the group and carries the structure of a Hopf?-algebra.
Dropping the?-structure we obtain the coordinate rings of the corresponding complex
Lie groups,SLn(C), SOn(C) andSp2n(C). These coordinate rings are generated already
by the matrix elements of the defining representations of these groups (forGLn(C) we
should adjoin(det(t))−1 wheret is the matrix of matrix element functions). Corresponding
to these classical groups are the well known FRT Hopf algebrasA(R), introduced by
Faddeev, Reshetikhin and Takhtajan (FRT) in [50]. They are ‘quantizations’ of the
classical coordinate rings. It is these structures upon which we should try to develop
some sort of noncommutative Lie group geometry. The pioneering works here are those
of Woronowicz [6, 7]. In particular, in [7] Woronowicz set out a formalism in terms of
bicovariant bimoduleswhich has been studied intensively by very many authors since. Let
us note that the classical differential calculus on Lie groups is bicovariant.

There is a well known ‘problem’ with the bicovariant calculi associated with the
standard FRT quantum groups other thanGLq(n): their dimensions do not agree with the
corresponding classical calculi. In the particular case ofSLq(n) the bicovariant calculus of
Woronowicz isn2-dimensional while the classical calculus is of dimensionn2 − 1 (the
dimension being the dimension of the vector space of left-invariant one-forms). This
problem has stimulated some authors to consider alternative approaches to the development
of differential geometry on quantum groups. For example, in [35] Schmüdgen and Scḧuler
consider left-covariant bimodules (developing Woronowicz’s original approach [6]) on
SLq(n). They obtain first-order calculi with the classical dimension. However, forN > 4
the higher-order calculi do not have the correct dimension. Another interesting approach
was initiated by Faddeev and Pyatov [36]. They considered, for the particular case of
SLq(n), the consequences of relaxing the condition of the classical Leibniz rule which is
present in the bicovariant Woronowicz approach. They obtained bicovariant calculi of the
correct classical dimension at all orders. However, subsequent work by Arutyunovet al
[11] suggests that a similar approach cannot be employed for the other simple quantum
groupsSOq(n) andSpq(n).

In this paper we consider the original Woronowicz bicovariant calculus, but we examine
such calculi on thenonstandardquantum groupsGLg,h(2) and SLh(2)—the so-called
Jordanian quantum groups. In [33, 34], Karimpour initiated the study of bicovariant
calculi associated withSLh(2). Here, working under the assumption that the bicovariant
bimodules are generated as left modules by the differentials of the quantum group generators,
we perform a complete classification of all first-order bicovariant calculi on the quantum
groupsGLh,g(2) and SLh(2). Furthermore we consider the higher-order calculi and the
corresponding quantum Lie algebras. Let us summarize our main classification results.
• There are three one-parameter families of four-dimensional first-order bicovariant

differential calculi onGLh,g(2) whose bimodules of forms are generated as leftGLh,g(2)-
modules by the differentials of the quantum group generators.
• For one value of the parameter, the calculi in the three families are the same. This

parameter value coincides with the value required for a ‘classical-like’ reduction to a three-
dimensional first-order bicovariant calculus onSLh(2) which is shown to be unique.
• For all the calculi the relations in the exterior algebra are obtained and are shown to

lead to exterior calculi whose dimension is classical at all orders.
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• For all the calculi the relations in the enveloping algebra of the quantum Lie algebra
are obtained and are shown to lead to PBW-type bases.

Classically, the Lie algebra of a Lie group is obtained as the vector space of tangent
vectors at the identity equipped with a Lie bracket defined in terms of the left-invariant
vector fields on the group manifold. The formalism of Woronowicz’s bicovariant calculus
has a natural construction for a ‘quantum Lie algebra’ generalizing the classical construction
to the abstract Hopf algebra setting. However, for all standard quantum groups the quantum
Lie algebras so obtained have the ‘wrong’ dimension. This has prompted authors such as
Sudbery and Delius to look for alternative constructions for quantum Lie algebras [43–
45]. There are two different approaches described in their work. Recall that classically
the Lie algebrag is an ad-submodule of the classical adjointU(g)-module,U(g), and its
Lie bracket is the restriction of this classical adjoint action tog. This motivates the first
approach [43, 44],approach 1, in which we look for an ad-submodulewithin the quantized
universal enveloping algebraUq(g) which has the correct dimension and upon which the
restriction of the adjoint action ofUq(g) closes. Lyubashenko and Sudbery employed a
result of Joseph and Letzter and obtained a quantum Lie algebra in the casesUq(sln(C))
such that the coproduct ofUq(sln(C)) applied to the basis of their quantum Lie algebra is
of a particularly neat form. The other approach [45],approach 2, (see also the paper by
Bremner [47] and the earlier paper of Donin and Gurevich [48] where the idea appeared
originally) constructs a quantum Lie algebra independent of any embedding intoUq(g). The
idea here is to recall that classically the Lie bracket is an intertwiner, [, ] : ad⊗ ad→ ad,
where ad is the usual adjoint representation ofU(g). The quantum Lie bracket is then
obtained as the intertwiner of the correspondingUq(g)-modules. Furthermore, classically
the Killing form is an intertwiner,B : ad⊗ad→ C, and considering the intertwiner between
the tensor product of the two (quantum) adjoint modules and the trivial representation,
an analogue of the Killing form for the quantum Lie algebras is obtained in a rather
straightforward manner. The two approaches lead to isomorphic quantum Lie algebras.
However, each has advantages over the other:approach 1 allows us to see explicitly
the relationship between the quantum Lie algebra and the quantized universal enveloping
algebra and, in principle, allows us to determine the coproduct ofUq(g) on the quantum
Lie algebra;approach 2 gives a reasonably simple prescription for constructing quantum
Lie algebras based on computation of inverse Clebsch–Gordan coefficients [46].

In the last part of this paper we pursue this line of enquiry starting with the Jordanian
quantized enveloping algebraUh(sl2(C)). The following results are obtained.
• A Jordanian quantum Lie algebra is obtained according toapproach 1 and the

expressions for the coproduct ofUh(sl2(C)) on the basis elements of the quantum Lie
algebra are obtained. A definition for an invariant Killing form is also recalled and its
evaluations on the quantum Lie algebra elements is presented.
• The details of the motivation forapproach 2are recalled and this approach is used

to check the commutators and Killing form obtained already throughapproach 1.
• We observe that the quantum Lie algebras obtained equivalently byapproach 1

and approach 2are isomorphic to the quantum Lie algebra obtained through the unique
bicovariant calculus on the Jordanian quantum groupSLh(2).

The paper is self-contained and organized as follows. In section 2 we recall pertinent
definitions and results concerning the Jordanian quantum groupsGLh,g(2) andSLh(2). In
section 3 Woronowicz’s theory is reviewed in a style intended to enlighten the details of
the classification procedure, due to Müller-Hoissen [22], which we present in section 4.
The classification results appear in sections 5 and 6. The Jordanian quantized universal
enveloping algebra is recalled in section 7 with the corresponding quantum Lie algebras
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obtained in sections 8 and 9 throughapproach 1and approach 2respectively. In the
final section 10 we complete the picture by observing that these quantum Lie algebras are
isomorphic to the one obtained from the bicovariant calculus on the Jordanian quantum
groupSLh(2).

2. The Jordanian quantum groups

The two-parameter Jordanian quantum groupGLh,g(2) is the co-quasitriangular Hopf
algebra derived from the followingR-matrix,

R =


1 −h h gh

0 1 0 −g
0 0 1 g

0 0 0 1

 . (1)

Being triangular, i.e.R21R = I , thisR-matrix is trivially Hecke, with

(R̂ − 1)(R̂ + 1) = 0 (2)

whereR̂ = PR andPij,kl = δilδjk.
The quantum group associated with theR-matrix R21 = R(−h,−g), with g = h = 1,

was first investigated by Demidovet al [8], while R21 with g = h is the one-parameter
nonstandardR-matrix whose quantum group was considered by Zakrzewski [9]. Lazarev
and Movshev [15] considered the quantum group associated withR with g = h and
also the corresponding quantized universal enveloping algebra,Uh(sl2(C)). The quantized
enveloping algebra was also investigated by Ohn [19] and will be discussed in more detail in
section 7. In fact, theR-matrix, (1), can be extracted from an early work of Gurevich [10];
though the associated quantum group structure was not investigated there.

In the usual way, defining an algebra valued matrixT as

T =
(
a b

c d

)
(3)

the relations of a matrix element bialgebraA(R) are obtained from the well known FRT [50]
matrix relation,

RT1T2 = T2T1R (4)

as

ca = ac − gc2 cd = dc − hc2

db = bd + g(ad − bc + hac − d2)

ab = ba + h(ad − bc + hac − a2)

cb = bc − hac − gdc + ghc2 da = ad + hac − gdc.

(5)

The coalgebra structure is provided by a coproduct defined on the generators as,

1(a) = a ⊗ a + b ⊗ c 1(b) = a ⊗ b + b ⊗ d
1(c) = c ⊗ a + d ⊗ c 1(d) = c ⊗ b + d ⊗ d (6)

with the counit given by,

ε(a) = 1 ε(b) = 0

ε(c) = 0 ε(d) = 1.
(7)
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R̂ has a spectral decomposition,

R̂ = P+ + P− (8)

whereP+ = 1
2(R̂+I ) is a rank 3 projector andP− = 1

2(R̂−I ) is a rank 1 projector. In the

notation of Majid [12], these projectors provide the associated quantum coplane,A2|0
−1, and

plane,A2|0
1 , respectively through the relationsP±x1x2 = 0 wherex is the 2× 1 column

vector

(
x1

x2

)
. These are associative algebras generated by the elementsx1 andx2 subject

to the relations,

x2
2 = 0 x2

1 = −hx2x1 x1x2 = −x2x1 (9)

in the case of the coplaneA2|0
−1, and,

x1x2 = x2x1+ gx2
2 (10)

in the case of the planeA2|0
1 . A result of Mukhin [14, theorems 1–3] (see

also [49, theorem 3.5]) then tells us thatA(R) is the universal coacting bialgebraon this
pair of algebras in the sense of Manin [13]. In the language of Sudbery [16],A2|0

−1 and

A2|0
1 are thencomplementary coordinate algebrasdeterminingA(R), and with an easy

application of the diamond lemma [17] telling us that they are moreoversuperpolynomial
algebras generated by odd and even generators respectively having ordering algorithms
with respect to the ordering of the generators,x2 ≺ x1, we deduce immediately from
a result of Sudbery [16, theorem 3] thatA(R) has as a basis the ordered monomials
{bαaβdγ cδ : α, β, γ, δ ∈ Z>0}. This fact is used extensively in the computations which
lead to our main results.

It follows from A2|0
−1, thatR is Frobenius[40] and so in the usual way we can obtain

a group-like element in the bialgebraA(R), D, called the quantum determinant, and given
by,

D = ad − bc + hac. (11)

The commutation relations betweenD and the generators ofA(R) are,

Da = aD + (h− g)cD Dd = dD − (h− g)cD
Dc = cD Db = bD + (h− g)(dD − aD − (h− g)cD) (12)

so we can localize with respect to the Ore set [55]S = {Dα : α ∈ Z>1}, and define
GLh,g(2) = A(R)[D−1], having extra commutation relations,

aD−1 = D−1a + (h− g)D−1c dD−1 = D−1d − (h− g)D−1c

cD−1 = D−1c bD−1 = D−1b + (h− g)(D−1d −D−1a − (h− g)D−1c)
(13)

with

1(D−1) = D−1⊗D−1 ε(D−1) = 1. (14)

GLh,g(2) is a Hopf algebra with the antipode given by

S(a) = D−1(d + gc) S(b) = D−1(gd − ga − b + g2c)

S(c) = −D−1c S(d) = D−1(a − gc) S(D−1) = D. (15)

The Hopf algebraGLh,g(2) is clearly still polynomial with basis{D−αbβaγ dδcζ :
α, β, γ, δ, ζ ∈ Z>0}.

With g = h, D is central and we can consistently setD = 1 and pass to the quantum
groupSLh(2). The relations forSLh(2) are just (5), but with the combinationad replaced
wherever it appears bybc− hac+ 1 and also the further relationad = bc− hac+ 1. With
g = h = 0 we recover the classical group coordinate rings.
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3. Review of Woronowicz’s bicovariant differential calculus

We begin with the basic definitions.

Definition 3.1.A first-order differential calculusover an algebraA is a pair (0, d) such
that:

(1) 0 is anA-bimodule, i.e.

(aω)b = a(ωb) (16)

for all a, b ∈ A, ω ∈ 0, where the left and right actions which make0, respectively, a left
A-module and a rightA-module are written multiplicatively;

(2) d is a linear map, d :A→ 0;
(3) for anya, b ∈ A, the Leibniz rule is satisfied, i.e.

d(ab) = d(a)b + ad(b) (17)

(4) the bimodule0, or ‘space of one-forms’, is spanned by elements of the formadb,
a, b ∈ A.

Remark 3.2.Given two first-order differential calculi over an algebraA, (0, d) and(0′, d′),
we say that they areisomorphic if there is a bimodule isomorphismφ : 0 → 0′ such that
φ ◦ d= d′.

Remark 3.3.We usually write da for d(a).

Definition 3.4.A bicovariant bimoduleover a Hopf algebraA is a triple(0,1L
A,1

R
A) such

that:
(1) 0 is anA-bimodule;
(2) 0 is anA-bicomodule with left and right coactions1L

A and1R
A respectively, i.e.

(id⊗1L
A) ◦1L

A = (1⊗ id) ◦1L
A (ε ⊗ id) ◦1L

A = id (18)

making0 a left A-comodule,

(1R
A ⊗ id) ◦1R

A = (id⊗1) ◦1R
A (id⊗ε) ◦1R

A = id (19)

making0 a rightA-comodule, and

(id⊗1R
A) ◦1L

A = (1L
A ⊗ id) ◦1R

A (20)

which is theA-bicomodule property;
(3) the coactions,1L

A and1R
A are bimodule maps, i.e.

1L
A(aωb) = 1(a)1L

A(ω)1(b) (21)

1R
A(aωb) = 1(a)1R

A(ω)1(b). (22)

Remark 3.5.The Sweedler notation for coproducts in the Hopf algebraA is taken to be
1(a) = a(1) ⊗ a(2) for all a ∈ A and is extended to the coactions as1L

A(ω) = ω(A) ⊗ ω(0)
and1R

A(ω) = ω(0) ⊗ ω(A). In this notation the conditions (18)–(20) become,

ω(A) ⊗ (ω(0))(A) ⊗ (ω(0))(0) = (ω(A))(1) ⊗ (ω(A))(2) ⊗ ω(0) ε(ω(A))ω(0) = ω (23)

(ω(0))(0) ⊗ (ω(0))(A) ⊗ ω(A) = ω(0) ⊗ (ω(A))(1) ⊗ (ω(A))(2) ε(ω(A))ω(0) = ω (24)

ω(A) ⊗ (ω(0))(0) ⊗ (ω(0))(A) = (ω(0))(A) ⊗ (ω(0))(0) ⊗ ω(A) (25)

for all ω ∈ 0.
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Definition 3.6.A first-order bicovariant differential calculusover a Hopf algebraA is a
quadruple(0, d,1L

A,1
R
A) such that:

(1) (0, d) is a first-order differential calculus overA;
(2) (0,1L

A,1
R
A) is a bicovariant bimodule overA;

(3) d is both a left and a right comodule map, i.e.

(id⊗d) ◦1(a) = 1L
A(da) (26)

(d⊗ id) ◦1(a) = 1R
A(da) (27)

for all a ∈ A.

Remark 3.7.Given a first-order calculus over a Hopf algebra,(0, d), (26) and (27) uniquely
determine left and right coactions, and hence a bicovariant bimodule structure. However,
the existenceof these coactions and the corresponding bicovariant bimodule is of course
not guaranteed.

Example 3.8.Given any associative algebraA, we may form a first-order differential
calculus overA, (A2,D), where

A2 =
{∑

k

ak ⊗ bk ∈ A⊗ A :
∑
k

akbk = 0

}
(28)

and D :A→ A2 is given by

Da = 1⊗ a − a ⊗ 1. (29)

A2 has a bimodule structure given, for allak, bk, c ∈ A by

c

(∑
k

ak ⊗ bk
)
=
∑
k

cak ⊗ bk
(∑

k

ak ⊗ bk
)
c =

∑
k

ak ⊗ bkc. (30)

The importance of this differential calculus lies in the fact thatany first-order differential
calculus overA, (0, d), is isomorphic to one of the form(A2/N , π ◦ D) whereN is the
kernel of the surjective mapπ : A2 → 0 defined byπ(

∑
k ak ⊗ bk) =

∑
akdbk. For this

reason,(A2,D) is said to beuniversal. Moreover, it is not difficult to check that whenA
is a Hopf algebra,(A2,D) is a first-order bicovariant differential calculus.

Definition 3.9.An elementω of a bicovariant bimodule(0,1L
A,1

R
A) is said to beleft-

invariant if

1L
A(ω) = 1⊗ ω (31)

right-invariant if

1R
A(ω) = ω ⊗ 1 (32)

andbi-invariant if it is both left- and right-invariant.

Remark 3.10.Denoting the vector space of all left-invariant elements of0 by 0inv, there is
a projectionP : 0→ 0inv defined on any elementω ∈ 0 as,

P(ω) = S(ω(A))ω(0). (33)

If (0, d,1L
A,1

R
A) is a first-order bicovariant differential calculus overA then it is not difficult

to see the equivalence of the statements that the differentials generate0 as a leftA-module
and that the elementsP(da) = S(a(1))da(2), for all a ∈ A, span the vector space of left-
invariant one-forms. Further, for anya ∈ A, da may be expressed in terms of left-invariant
forms as

da = a(1)P (da(2)). (34)
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An alternative construction of the universal differential calculus occurs in the situation
of particular interest to us. It is described in the following example.

Example 3.11.We start with a Hopf algebraA defined in terms of a finite number of
generators,(Tij )i,j=1...n say, together with certain relations which are consistent with a
PBW-type basis and the usual (matrix-element bialgebra) coproduct and counit. We may
then introduce a bimodule00 as the freeA-bimodule on the symbols d0Tij with the linear
map d0 : A → 0 defined on any element ofA by way of the Leibniz rule. (00, d0)

is then also a universal first-order differential calculus, and being therefore isomorphic to
(A2,D) is certainly bicovariant. Indeed, (26) and (27) specify the coactions, and the space
of left-invariant forms,00inv, is spanned by all elements of the formS(a(1))θika(2) where
θik =

∑
j S(Tij )d0Tjk anda ∈ A. If we denote by(ϑi)i∈I a basis for00, whereI is some

countably infinite index set, then from (27), there existvijs such that the right coaction on
theϑis takes the form,

1R
A(ϑi) =

∑
j∈I

ϑj ⊗ vji . (35)

In particular, then2 left-invariant elementsθik span a sub-bicomodule, with

1R
A(θik) =

∑
s,t=1...n

θst ⊗ S(Tis)Ttk. (36)

At this point in example 3.11 the only relations between algebra and bimodule elements
are those coming from the Leibniz rule. Obtaining further relations involves finding a
suitable ‘relation space’,N , which can be factored out from00 while maintaining the
bicovariance. In the context of the universal calculus,(A2,D), theorems 1.5 and 1.8 of [7]
tell us that suchN must be of the formτ−1(A⊗R) whereτ−1(a⊗b) = aS(b(1))⊗b(2) and
R is a right ideal ofA, contained in kerε, which is stable under the right-adjoint coaction†.
Conversely, given a first-order bicovariant differential calculus,(0, d,1L

A,1
R
A), R may be

recovered as the set of alla ∈ kerε such thatP(da) = 0.
It is desirable to classify all bicovariant calculi on a given quantum group which have

particular properties. This problem of classification can be regarded as the problem of
classifying the ad-invariant idealsR [37–39]. However, in this paper, following M̈uller-
Hoissen [22], we consider a more ‘hands on’ approach. We look for calculi whose bimodule
of one-forms is generated as aleft A-module by the differentials of the generators (this
assumption is also made in [37, 38]). In effect we are passing directly to a class of, as yet
unspecified, quotients of00 which we then wish to constrain by the requirement that the
bicovariance is not destroyed. For this approach we need the characterization of bicovariant
bimodules which is provided by the following theorem of Woronowicz.

Theorem 3.12.Let (0,1L
A,1

R
A) be a bicovariant bimodule overA and let(θi)i∈I be a basis

of 0inv, whereI is some countable index set. Then we have:
(1) any elementω ∈ 0 has a unique expression as

ω =
∑
i∈I

aiθi (37)

whereai ∈ A;
(2) there exist linear functionalsfij ∈ A∗, i, j ∈ I , such that

θia =
∑
j∈I
(fij ? a)θj (38)

† We recall that the right-adjoint coaction is defined on anya ∈ A asAd∗R(a) = a(2) ⊗ S(a(1))a(3).
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whereα ? a = α(a(2))a(1) for all α ∈ A∗, a ∈ A;
(3) the functionalsfij are uniquely determined by (38) and satisfy

fik(ab) =
∑
j∈I

fij (a)fjk(b) fik(1) = δik (39)

for all a, b ∈ A, i, j ∈ I ;
(4) there exist elementsvij ∈ A, i, j ∈ I , such that for allθi ,

1R
A(θi) =

∑
j∈I

θj ⊗ vji (40)

1(vik) =
∑
j∈I

vij ⊗ vjk ε(vik) = δik (41)

(5) for all a ∈ A,∑
j∈I

vji(a ? fjk) =
∑
j∈I
(fij ? a)vkj (42)

wherea ? α = α(a(1))a(2) for all α ∈ A∗, a ∈ A.
Conversely, if(θi)i∈I is a basis of a vector spaceV , and we have functionals(fij )i,j∈I

defined onA and elements(vij )i,j∈I in A which satisfy (39), (41) and (42), then there exists
a unique bicovariant bimodule such thatV = 0inv and (38) and (40) are satisfied.

This result places significant constraints on the possible bicovariant calculi which are
consistent with our assumption that the differentials of the generators should generate the
bimodule of forms as a leftA-module. That assumption implies immediately that0inv is
spanned by thefinite set of elementsθik. Choosing a basis from this set we either take
all n2 as linear independent elements, in which case thevijs of (40) and (41) have already
been determined in (36), or we introduce linear relations between theθiks. In the latter
case we must be sure that such relations do not destroy the bicovariance—they must factor
through the coactions. This condition will tend to fix the possible bases of0inv, which
in turn determines thevijs through (40) and (36). It then follows immediately that (41)
is satisfied. Now, trying to introduce commutation relations which factor through the left
and right coactions which we wish to maintain, it is not too difficult to see that when
these relations take the form (38) with thefijs satisfying (39) and (42), bicovariance is
maintained. Moreover, as the theorem states, the commutation relations inany bicovariant
bimodule mustalways take this form. Thus our method of attacking the classification
problem can now be discerned. We decide upon a valid basis of0inv, and then assume
the general form for the commutation relations, (38). We must then impose as constraints,
consistency with the relations already present from the Leibniz rule, together with (39)
and (42). This procedure will be made absolutely explicit for the case of the quantum
groups of particular interest to us in the following section.

Remark 3.13.Having chosen a basis(θi)i∈I for 0inv, the right-invariant elements(ηi)i∈I
defined byηi =

∑
j∈I θjS(vji) form a basis for the vector space of right-invariant one-

forms,0inv.

Remark 3.14.The dimensionof a bicovariant calculus is defined to be dim0inv. We shall
only be interested in finite,d-dimensional, examples so we will eschew the index set and
consider indices running over a finite set.

Given two bicovariant bimodules,(0,1L
A,1

R
A) and (0̃, 1̃L

A, 1̃
R
A), of dimensionsd and

d̃ respectively, their tensor product overA, (0′ = 0 ⊗A 0̃,1′LA,1′RA) is also a bicovariant
bimodule as follows. The left and right coactions ofA on 0′ are given by

1′LA(ω ⊗ ω̃) = ω(A)ω̃(A) ⊗ ω(0) ⊗ ω̃(0) 1′RA(ω ⊗ ω̃) = ω(0) ⊗ ω̃(0) ⊗ ω(A)ω̃(A) (43)
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and thef functionals of theorem 3.12 are now given byF ′ik,j l = fij ∗ f̃kl , where∗ is the
usual convolution product, such that

(θi ⊗ θ̃k)a =
∑

j=1...d,l=1...d̃

(F ′ik,j l ? a)(θj ⊗ θ̃l) (44)

for all a ∈ A, where (θi)i=1...d and (θ̃i)i=1...d̃ are the bases of left-invariant elements
in 0inv and 0̃inv respectively, so that(θi ⊗ θ̃j )i=1...d,j=1...d̃ is the basis of left-invariant
elements in0′ inv. It is clear that in this way we can build arbitraryn-fold tensor powers,
0⊗n = 0 ⊗A 0 ⊗A . . .⊗A 0 of a given bicovariant bimodule, all of which are themselves
bicovariant with left and right coactions denoted1nL

A and1nR
A respectively. We can then

define0⊗ = A⊕0⊕0⊗2⊕. . . to be the analogue of the classical algebra of covariant tensor
fields. 0⊗ is a bicovariant graded algebra, in that it is a tensor algebra and a bicovariant
bimodule overA, with coactions1⊗LA and1⊗RA which are algebra maps and coincide on
elements of0⊗n with the coactions1nL

A and1nR
A respectively.

The next step in Woronowicz’s construction of a noncommutative geometry for Hopf
algebras is to introduce an analogue of the classical external algebra of forms. Starting from
the bicovariant graded algebra0⊗ we want to obtain another bicovariant graded algebra,
theexternal bicovariant graded algebra, �, as a quotient,� = 0⊗/S, by some graded two-
sided idealS. Woronowicz introduces theunique linear bimodule map3 : 0⊗0→ 0⊗0
such that

3(θ ⊗ η) = η ⊗ θ (45)

for any θ ∈ 0inv, η ∈ 0inv. 3 is then also a bicomodule map, is given explicitly on the
basis of left-invariant elements(θi ⊗ θk)i,j=1...d by

3(θi ⊗ θk) =
∑

s,t=1...d

3ik,st θs ⊗ θt =
∑

s,t=1...d

fit (vsk)θs ⊗ θt (46)

and can be shown to satisfy the braid equation,312323312 = 323312323. The map3 may
then be used in just the same way as the permutation operator is used classically. Thus
we define an analogue of the antisymmetrization operator on0⊗n, W1...n, by replacing the
classical permutation operator by3 everywhere in the classical antisymmetrizer.W1...n is
then a bimodule and bicomodule mapW1...n : 0⊗n→ 0⊗n and we can defineSn = kerW1...n

so that0⊗n/Sn is isomorphic to ImW1...n and� = 0⊗/S whereS =⊕n=2 S
n. As W1...n

is a bicomodule map, the left and right coactions of0⊗ descend to the quotient where they
shall be denoted1�L

A and1�R

A respectively. Moreover, we can now define thewedge
product asω1 ∧ ω2 ∧ . . . ∧ ωn = W1...n(ω1 ⊗ ω2 ⊗ · · · ⊗ ωn) where theωi are arbitrary
elements of0.

Remark 3.15.If we were to construct the bicovariant graded algebra0̃⊗ from a bicovariant
bimodule0̃ which contains0 as a sub-bimodule and a sub-bicomodule, then the bicovariant
graded algebra0⊗ embeds naturally intõ0⊗ in the sense that there is the obvious natural
embedding mapφ : 0⊗ → 0̃⊗ such that

φ|A = id φ|0 = ι (47)

φ(ωρ) = φ(ω)φ(ρ) (48)

(id⊗φ) ◦1L
A = 1⊗LA ◦ φ (φ ⊗ id) ◦1R

A = 1⊗RA ◦ φ (49)

whereι : 0 → 0̃ is the natural inclusion. An attractive feature of the external bicovariant
algebra construction, which has its origin in the uniqueness of the map3, is that this
embedding survives the quotienting procedures so that(�,1�L

A,1
�R

A) embeds naturally in

(�̃,1�̃
L

A,1
�̃
R

A).
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We may now state the following theorem of Woronowicz.

Theorem 3.16.Let � be the external bicovariant algebra constructed above. There exists
one and only one linear map d :�→ � such that:

(1) d increases the grade by one;
(2) on elements of grade 0, d coincides with the differential of the first-order bicovariant

calculus(0, d,1L
A,1

R
A);

(3) for all ω ∈ 0⊗k, k = 0, 1, 2, . . . andω′ ∈ �,

d(ω ∧ ω′) = dω ∧ ω′ + (−1)kω ∧ dω′ (50)

(4) for anyω ∈ �,

d(dω) = 0 (51)

(5) d is a both a left and a right comodule map i.e.

1�L

A(dω) = (id⊗d) ◦1�L

A(ω) (52)

1�R

A(dω) = (d⊗ id) ◦1�R

A(ω) (53)

for all ω ∈ �.

Remark 3.17.The external bicovariant algebra� equipped with the differential described
in this result will be called theexterior bicovariant differential calculusover the Hopf
algebraA, and denoted(�, d,1�L

A,1
�R

A). Brzezínski has shown that this is a super-Hopf
algebra [23].

Remark 3.18.To prove this theorem Woronowicz extends the bimodule0 to 0̃ = Ax ⊕ 0
whereAx is the leftA-module freely generated by the single elementx, such that the right
action ofA on an elementax is given byaxb = abx + adb and the coactions are such
that the elementx is bi-invariant. The theorem is then proved for the external bicovariant
algebra�̃ built from 0̃ with the final result for� coming after using the natural embedding
of � in �̃. Along the way the differential is expressed as da = [x, a], for any a ∈ A, and
more generally as dω = [x, ω]∓ for anyω ∈ 0̃ where [x, ω]∓ = x∧ω∓ω∧x with − and+
for ω of even and odd grade respectively. In particular examples of bicovariant differential
calculi it sometimes happens that there is a bi-invariant elementwithin the unextended
calculus which implements the differential in this way. Such calculi are calledinner.

The final component of the Woronowicz differential calculus is the analogue of the
classical Lie algebra of tangent vectors at the identity. Classically this is isomorphic to
(kerε/(kerε)2)∗. In the abstract Hopf algebra settings it turns out that defining a spaceL
by L = (kerε/R)∗ there is a unique bilinear map,〈, 〉 : 0×L→ C, such that for alla ∈ A,
ω ∈ 0 andχ ∈ L,

〈aω, χ〉 = ε(a)〈ω, χ〉 〈da, χ〉 = χ(a) (54)

which is non-degenerateas a pairing between0inv andT . Thus, we can introduce a basis
(χi)i=1...d for L dual to (θi)i=1...d . Also, it is not too difficult to see that for anyω ∈ 0
there is an elementa ∈ kerε such thatP(ω) = P(da). Combined with the defining
characteristics of the pairing between0 andL, we then arrive at a basisai of (kerε/R)
such thatθi = P(dai). Theseai are analogues of the classical coordinate functions at
the identity. The following result of Woronowicz continues the analogy with the classical
situation.
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Theorem 3.19.For all a, b ∈ A,

da =
∑
j=1...d

(χj ? a)θj (55)

dθi = −
∑

j,l=1...d

Cj l,iθj ∧ θl (56)

χi(ab) =
∑
j=1...d

χj (a)fji(b)+ ε(a)χi(b) (57)∑
j=1...d

χj (a)vij = χi(a(2))S(a(1))a(3) (58)

where thefji andvij are as introduced in theorem 3.12, andCj l,i = (χj ∗ χl)(ai).
Equation (57) shows us that theχi may be interpreted as ‘deformed derivations’ and is

equivalent to a coproduct for the ‘quantum tangent vectors’,

1(χi) =
∑
j=1...d

χj ⊗ fji + 1⊗ χi. (59)

Further, asR is stable under the right-adjoint coaction, it follows thatL is stable under the

right-adjointA∗-action,
adG, that is,S(α(1))χα(2) ∈ L for all α ∈ A∗ and anyχ ∈ L. In the

classical case this action, restricted to the tangent space, provides the Lie bracket. So we
may define aquantum Lie bracketas,

[χi, χk] = χi adG χk =
∑
j=1...d

Cik,jχj (60)

where theCik,j are analogues of the classical Lie algebra structure constants and are still to
be determined. But from the coproduct on theχi we can expand the right-adjointA∗-action,
to obtain,

[χi, χk] = χiχk −
∑
s=1...d

χs(χi
adG fsk). (61)

We can then use (58) to determineχi
adG fsk and obtain an expression for the bracket as a

quantum commutator,

[χi, χk] = χiχk −
∑

s,t=1...d

3st,ikχsχt . (62)

The structure constants,Cik,j may now be determined by evaluating the right-hand sides
of (60) and (62) onal and equating the results to obtain,

Cik,j = Cik,j −
∑

s,t=1...d

3st,ikCst,j . (63)

There is aquantum Jacobi identityfor the quantum Lie bracket given by

[χi, [χj , χk]] = [[χi, χj ], χk] −
∑

s,t=1...d

3st,jk[[χi, χs ], χt ]. (64)

The universal enveloping algebraof the quantum Lie algebraL may be introduced as
the quotient of the tensor algebra ofL by the two-sided ideal generated by the elements
χiχk −

∑
s,t=1...d 3st,ikχsχt −

∑
j=1...d Cik,jχj .
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4. The classification procedure

In this section we make explicit the procedure, already outlined in the previous section, for
determining under certain assumptions all possible first-order bicovariant differential calculi
for a given quantum group. It was first applied by Müller-Hoissen [22, 24] to the case
of the standard two-parameter quantum groupGLq,p(2). Some further results appeared
in subsequent papers [25, 26], and in [27] it was applied to the standard one-parameter
quantum groupGLq(3). Here we apply this ‘recipe’ to the cases ofGLh,g(2) andSLh(2).

Starting with our quantum groupA, whereA is eitherGLh,g(2) or SLh(2), we introduce
the first-order differential calculus, in the first instance, as the freeA-bimodule00, on
the symbols{d0a, d0b, d0c, d0d} with the differential d0 : GLh,g(2) → 00 defined on
any element ofA by way of the Leibniz rule. Note that d0D−1 = −D−1d0DD−1.
However, as already mentioned, we pass directly to some quotient(0, d) which we assume
is generated as a leftA-module by {da, db, dc, dd} and is still a bicovariant bimodule,
denoted(0, d,1L

A,1
R
A). Then, by remark 3.100inv is spanned by the four left-invariant

forms {θ1, θ2, θ3, θ4} where,

θ1 = P(da) = S(a)da + S(b)dc θ2 = P(db) = S(a)db + S(b)dd
θ3 = P(dc) = S(c)da + S(d)dc θ4 = P(dd) = S(c)db + S(d)dd.

(65)

In the other direction, from (34), the differentials of the generators may be written in terms
of the left invariantθis as,

da = a(1)P (da(2)) = aθ1+ bθ3 db = b(1)P (db(2)) = aθ2+ bθ4

dc = c(1)P (dc(2)) = cθ1+ dθ3 dd = d(1)P (dd(2)) = cθ2+ dθ4.
(66)

We are now free to choose from,{θ1, θ2, θ3, θ4}, a basis for0inv and look for corresponding
nontrivial first-order bicovariant differential calculi. We choose to look for calculi with the
classical dimension, so forGLh,g(2) we make the further assumption that{θ1, θ2, θ3, θ4}
is a basis of0inv and call any extant calculi four-dimensional calculi, while forSLh(2)
we look for three-dimensional calculi by assuming that{θ1, θ2, θ3} is a basis ofGinv with
θ4 = α1θ1+α2θ2+α3θ3 and the coefficientsα1, α2 andα3 to be determined. The assumptions
will be justified if we find nontrivial calculi. This in turn will be established if we can find
functionalsfij and elementsvij as in theorem 3.12 consistent with our assumptions.

As we discussed in the previous section, the elementsvij are already fixed through our
assumptions, by (27), (65) and (40). For the four-dimensional,GLh,g(2), calculi, we have

V = ||vij || =


S(a)a S(a)b S(c)a S(c)b

S(a)c S(a)d S(c)c S(c)d

S(b)a S(b)b S(d)a S(d)b

S(b)c S(b)d S(d)c S(d)d

 . (67)

For the three-dimensional,SLh(2), calculi we have

V = ‖vij‖ =
(
S(a)a + α1S(b)c S(a)b + α1S(b)d S(c)a + α1S(d)c

S(a)c + α2S(b)c S(a)d + α2S(b)d S(c)c + α2S(d)c

S(b)a + α3S(b)c S(b)b + α3S(b)d S(d)a + α3S(d)c

)
(68)

but in this case we must also have,

1R
A(θ4− α1θ1+ α2θ2+ α3θ3) = 0. (69)

Evaluating (69) with (65), (27) and (66) fixes theαi coefficients to be given byα1 = −1,
α2 = 0 andα3 = −2h, so that we must have

θ4 = −θ1− 2hθ3. (70)
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In fact, when we look for bi-invariant forms in the four-dimensional calculi, we soon find
that up to scalar multiplication there is but one, which we denote by Trh 2, and which is
given by

Trh 2 = θ1+ 2hθ3+ θ4. (71)

Existence of the bicovariant first-order differential calculi which we seek, now hinges
entirely on thefijs. Following Müller-Hoissen [22], let us refine our notation slightly. For
the four-dimensional calculi, we write relations (38) in terms of four 4× 4 matrices, the
‘ABCD’ matrices,Aij = fij (a), Bij = fij (b), Cij = fij (c) andDij = fij (d), as

θia =
∑
j=1...4

(aAij + bCij )θj θib =
∑
j=1...4

(aBij + bDij )θj

θic =
∑
j=1...4

(cAij + dCij )tj θid =
∑
j=1...4

(cBij + dDij )θj .
(72)

In the case of the three-dimensional calculi the 4× 4 ABCD matrices are simply replaced
by 3× 3 ABCD matrices with the summations then to 3. We may now list the constraints
on theABCD matrices.

Constraint 1.Differentiating the quantum group relations, (5), to obtain, inR-matrix form,

d(RT1T2− T2T1R) = R(dT1)T2+ RT1(dT2)− (dT2)T1R − T2(dT1)R = 0 (73)

we replace the differentials by left-invariant forms through (66). We then use (72) to
commute theθis to the right which then allows us to equate the (ordered) algebra valued
coefficients and obtain linear relations between the matrix elements of theABCD matrices.
Similarly for the three-dimensional case, but then, when replacing the differentials by left-
invariant forms, we also use (70).

Constraint 2.In both the three- and four-dimensional cases relations (42) may be expressed
in the following matrix form,(

V TA V T B

V T C V TD

)(
a b

c d

)
=
(
a b

c d

)(
AV T BV T

CV T DV T

)
. (74)

Only algebra elements appear in these equations and once all terms are ‘straightened’ they
yield further linear relations among the matrix elements of theABCD matrices.

Constraint 3.Equations (39) tell us thatA, B, C andD must be the representation matrices
of a, b, c andd respectively, and that the matrix representation of the determinant,D say,
whereD = AD − BC + hAC, must be invertible in the case ofGLh,g(2), and equal to
the identity in the case ofSLh(2). Imposing these conditions we obtain nonlinear relations
amongst theABCD matrix elements.

Remark 4.1.Recall from remark 3.2 our definition of isomorphism for differential calculi.
As we assume a singleθi basis, different possibleABCD matrices must correspond to
nonisomorphic calculi.
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TheABCD matrices which result from this procedure provide the most general possible
first-order bicovariant calculi under the stated assumptions. We may now investigate the
external bicovariant graded algebras, and also the ‘quantum Lie algebras’ which are related
to our first-order calculi.

We begin by using theorem 3.16, in particular (51), together with (66) to deduce the
structure constantsCij,k appearing in the ‘Cartan–Maurer equations’, (56). For the four-
dimensional calculi, we obtain four 4× 4 matrices,

Cij,1 =


1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 Cij,2 =


0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0



Cij,3 =


0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0

 Cij,4 =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 1


(75)

while for the three-dimensional calculi we obtain three 3× 3 matrices,

Cij,1 =
( 1 0 0

0 0 1
0 0 0

)
Cij,2 =

( 0 1 0
−1 0 −2h
0 0 0

)
Cij,3 =

( 0 0 −1
0 0 0
1 0 −2h

)
(76)

together with a relation,

2θ1 ∧ θ1+ 4hθ3 ∧ θ1+ θ2 ∧ θ3+ θ3 ∧ θ2 = 0 (77)

which will have to be consistent with any commutation relations which we derive for left-
invariant forms of the three-dimensional calculi. In fact these commutation relations can
now be obtained by differentiating the relations (72) using (50). For the four-dimensional
calculi we obtain the following four sets of equations,

(Cst,jAij − Cjk,i(AjsAkt + BjsCkt ))θs ∧ θt
= Aij (θ1 ∧ θj + θj ∧ θ1)+ Bij θj ∧ θ3+ Cij θ2 ∧ θj

(Cst,jCij − Cjk,i(CjsAkt +DjsCkt ))θs ∧ θt
= Cij (θ4 ∧ θj + θj ∧ θ1)+Dij θj ∧ θ3+ Aij θ3 ∧ θj (78)

(Cst,jBij − Cjk,i(AjsBkt + BjsDkt ))θs ∧ θt
= Bij (θ1 ∧ θj + θj ∧ θ4)+ Aij θj ∧ θ2+Dij θ2 ∧ θj

(Cst,jDij − Cjk,i(CjsBkt +DjsDkt ))θs ∧ θt
= Dij (θ4 ∧ θj + θj ∧ θ4)+ Cij θj ∧ θ2+ Bij θ3 ∧ θj

where repeated indices are summed from 1 to 4. In the three-dimensional case the
commutation relations are given by,

(Cst,jAij − Cjk,i(AjsAkt + BjsCkt ))θs ∧ θt
= Aij (θ1 ∧ θj + θj ∧ θ1)+ Bij θj ∧ θ3+ Cij θ2 ∧ θj

(Cst,jCij − Cjk,i(CjsAkt +DjsCkt ))θs ∧ θt
= Cij (θj ∧ θ1− θ1 ∧ θj − 2hθ3 ∧ θj )+Dij θj ∧ θ3+ Aij θ3 ∧ θj (79)

(Cst,jBij − Cjk,i(AjsBkt + BjsDkt ))θs ∧ θt
= Bij (θ1 ∧ θj − θj ∧ θ1− 2hθj ∧ θ3)+ Aij θj ∧ θ2+Dij θ2 ∧ θj

(Cst,jDij − Cjk,i(CjsBkt +DjsDkt )θs ∧ θt
= −Dij (θ1 ∧ θj + θj ∧ θ1+ 2hθ3 ∧ θj + 2hθj ∧ θ3)+ Cij θj ∧ θ2+ Bij θ3 ∧ θj
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where repeated indices are now summed from 1 to 3.
Recalling that Trh 2 was the single bi-invariant form in the four-dimensional calculi,

and also the defining characteristic of Woronowicz’s bimodule map3, (45), we obtain a
general relation which must be consistent with commutation relations between one-forms
in the four-dimensional calculi,

0= Trh 2 ∧ Trh 2 = θ1 ∧ θ1+ 4h2θ3 ∧ θ3+ θ4 ∧ θ4+ 2h(θ1 ∧ θ3+ θ3 ∧ θ1)+ θ1 ∧ θ4

+θ4 ∧ θ1+ 2h(θ3 ∧ θ4+ θ4 ∧ θ3). (80)

Further, in any calculi where this bi-invariant form implements the differential in the sense
of remark (3.18), so that on arbitrary one-formsω we have,

dω = 1

κ
[Trh 2,ω]+ (81)

whereκ is some constant, we have further relations,

[Trh 2, θi ] = κ
∑

j,k=1...4

Cjk,iθj ∧ θk. (82)

Again these must be consistent with relations coming from (79).
The commutator expression for the quantum Lie bracket, (62), requires that we know

the explicit form of the matrix3 whose components are given in (46) as3ij,st = fit (vsk).
But we know the algebraic elements of the matrix||vij || and therefore their expressions in
terms of theABCD representation. This is all that is required.

Finally, the structure constants,Cij,k, for the quantum Lie bracket, (60), now follow
immediately from (63) as we know theCij,ks and3ij,sts.

5. Four-dimensional bicovariant calculi onGLh,g(2)

We summarize the result of applying the procedure of the previous section toGLh,g(2) in
the following theorems.

Theorem 5.1.There are three one-parameter families of four-dimensional first-order
bicovariant differential calculi onGLh,g(2) whose bimodules of forms are generated as
left GLh,g(2)-modules by the differentials of the quantum group generators. We denote the
three families by04D

1 , 04D
2 and04D

3 . They are completely characterized by their respective
ABCD matrices.

04D
1 : TheABCD matrices are given by,

A =


3z+2

2 0 −(3h+g)z−2h
2

−z
2

h(z+ 1) z+ 1 −h2(z+ 1) −h(z+ 1)
0 0 z+ 1 0
z
2 0 (h−g)z+2h

2
z+2

2



B =


0 z h(h+ g)(z+ 1) 0
0 (h+ g)(z+ 1) −hg(h+ g)(z+ 1) 0
0 0 −(h+ g)(z+ 1) 0
0 z g(h+ g)(z+ 1) 0

 (83)

C =


0 0 z 0
0 0 0 0
0 0 0 0
0 0 z 0
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D =


z+2

2 0 −(h−g)z+2g
2

z
2−g(z+ 1) z+ 1 −g2(z+ 1) g(z+ 1)

0 0 z+ 1 0
−z
2 0 −(h+3g)z−2g

2
3z+2

2

 .
Here we must havez 6= −1 to ensure the invertibility ofD. With g = h, the quantum
determinant is central in the differential calculus for parameter valuesz = 0 andz = −2.
The differential of the quantum determinant is

dD = z+ 2

2
D Trh 2 (84)

and forz 6= 0 the calculi are inner,

da = 1

2z
[Trh 2, a] db = 1

2z
[Trh 2, b]

dc = 1

2z
[Trh 2, c] dd = 1

2z
[Trh 2, d].

(85)

04D
2 : TheABCD matrices are given by,

A =


z+2

2 0 (h+g)z−2h
2

z
2

h(z+ 1) 1 h((h+ g)z− h) h(z− 1)
0 0 1 0
−z
2 0 −(h+g)z+2h

2
−z+2

2



B =


−hz 0 h(h+ g)(1− z) −hz
hgz (h+ g) hg(h+ g)(z− 1) ghz

z 0 (h+ g)(z− 1) z

−gz 0 g(h+ g)(1− z) −gz



C =


0 0 0 0
z 0 (h+ g)z z

0 0 0 0
0 0 0 0



D =


−z+2

2 0 −(h+g)z+2g
2

−z
2

g(z− 1) 1 g((h+ g)z− g) g(z+ 1)
0 0 1 0
z
2 0 (h+g)z−2g

2
z+2

2

 .

(86)

There is no restriction on the value ofz in this case. Withg = h, the quantum determinant
is central in the differential calculi for all values ofz. The differential of the quantum
determinant is

dD = 2− 3z

2
D Trh 2 (87)

but the calculi are not inner,

[Trh 2, a] = 0 [Trh 2, b] = 0

[Trh 2, c] = 0 [Trh 2, d] = 0.
(88)
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04D
3 : TheABCD matrices are given by,

A =


z+2

2 0 (h+g)z−2h
2

z
2

h 1 −h2 −h
0 0 1 0
z
2 0 (h+g)z+2h

2
z+2

2

 B =


0 0 h(h+ g) 0
0 (h+ g) −hg(h+ g) 0
0 0 −(h+ g) 0
0 0 g(h+ g) 0



C =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 D =


z+2

2 0 (h+g)z+2g
2

z
2−g 1 −g2 g

0 0 1 0
z
2 0 (h+g)z−2g

2
z+2

2

 .
(89)

Like 04D
1 we must havez 6= −1 to ensure the invertibility ofD. With g = h, the quantum

determinant is central in the differential calculus for parameter valuesz = 0 andz = −2.
The differential of the quantum determinant is

dD = z+ 2

2
D Trh 2 (90)

and again the calculi are not inner,

[Trh 2, a] = za Trh 2 [Trh 2, b] = zb Trh 2

[Trh 2, c] = zc Trh 2 [Trh 2, d] = zd Trh 2.
(91)

For z = 0, 04D
1 = 04D

2 = 04D
3 , whilst for all other parameter values the calculi are distinct.

Proof. The matrices were obtained by systematically extracting the implications of
constraints 1–3. This laborious task is made possible by using the computer algebra
package REDUCE [28]. REDUCE was also used to check the other results. The results
regarding the centrality of the quantum determinant were obtained by investigating under
what conditionsD = I , since this is precisely the requirement imposed by relations (72). To
obtain the expressions for the differential of the quantum determinant in the three calculi, we
differentiate the expressionD = ad−bc+hac, replace on the right-hand side differentials by
θis through (66), use the commutations relations between theθi and the algebra generators
provided by theABCD matrices to commute the left-invariant formsθi to the right and
finally straighten the algebra coefficients of theθi to obtain the quoted results. �

Remark 5.2.Müller-Hoissen [22] obtained a corresponding result for first-order differential
calculi on thestandard two-parameter quantum group,GLq,p(2). In that case, there is just
a single one-parameter family of calculi, andevery member of this family is inner.

Armed with the commutation relations between left-invariant forms and generators
provided by the classification ofABCD matrices, we may now obtain commutation relations
between the differentials of the generators, and the generators. For example, in04D

1 , starting
with daa, we replace da by its expression in terms of left-invariant forms, commute these to
the right and then replace the left-invariant forms by their expressions in terms of differentials
to obtain,

daa = (a + hc)da + z
4
{9a + (12h− 7g)c +D−1{bac − 3a2d + 2(h− g)

×{4bc2− 6adc − (h− 2g)dc2+ 3h(h− 2g)c3}}}da
+ z

2
D−1{a2c + (h− g){2ac2+ (h− 2g)c3}}db

+(ghc − ha)dc + z
4
{(7g − 6h)a − ((h− 7g)(4h− 3g)+ gh)c
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+D−1{2ba2− 6ha3+ 3(2h− 3g)a2d − (2h− 3g)bac + 2(h− g)
×{3(h− 6g)adc − 2(h− 6g)bc2− 3g(h− 2g)dc2+ 9gh(h− 2g)c3}}}dc
+−z

2
D−1{a3+ (2h− 3g)a2c + (h− g){(h− 6g)ac2− 3g(h− 2g)c3}}dd.

(92)

Most of the other commutation relations are much more complicated so we have chosen
not to reproduce them here. A feature of this commutation relation, which is shared with
the other differential-generator commutation relations for04D

1 , 04D
2 and04D

3 , is that it is not
quadratic, but that whenz = 0, in which case04D

1 = 04D
2 = 04D

3 , it simplifies drastically and
does indeed become quadratic. Moreover, whenz = 0 these quadratic differential-generator
commutation relations may be written inR-matrix form as†

R̂−1dT1T2 = T1dT2R̂. (93)

ThisR-matrix expression first appeared in the works of Schirrmacher [29] and Sudbery [30]
which were developments on the works of Manin [13, 31] and Maltsiniotis [32]. These
authors treated the coplane, in our caseA2|0

−1, as the algebra of differentials dxi of the

‘coordinates’xi whose algebra is that of the plane,A2|0
1 . They then sought differential

calculi expressed in terms of generatorsTij and their differentials dTij such that the
plane and coplane are invariant under the transformationsxi 7→

∑
Tij xj and dxi 7→∑

Tijdxj +
∑

dTij xj . In the context of Jordanian quantum groups, in [33] the author
postulated(93) as the relation defining commutation relations between differentials and
generators forSLh(2).

Remark 5.3.In [26], where the differential calculus on the standard quantum group
GLq,p(2) is considered, the authors also observe that the differential-generator commutation
relations are not quadratic for general calculi in the one-parameter family, but that once their
free parameter is fixed to zero, quadratic relations are obtained. Moreover in this case they
also recover commutation relations with anR-matrix expression.

Remark 5.4.From (93) it is a simple matter to demonstrate that for thez = 0 calculus
on GLh,g(2), the commutation relations between the left-invariant forms and the quantum
group generators may be written as,

21T2 = T2R2121R12 (94)

where

2 =
(
θ1 θ2

θ3 θ4

)
. (95)

Incidentally, this is precisely the relation we obtain if we attempt a naive application of
Jurco’s construction with, in the notation of [41],0 = 0c1 ⊗A 01.

Turning now to the higher-order calculi, we have the following result describing
commutation relations between the left-invariant forms.

Theorem 5.5.The commutation relations between the left-invariant forms in the external
bicovariant graded algebras�4D

1 , �4D
2 and�4D

3 built respectively upon the three families of
first-order calculi,04D

1 , 04D
2 and04D

3 using Woronowicz’s theory as described in section 3
are as follows,

† Of course,R̂−1 = R̂, but we write it this way to make comparison with the general results of other authors
explicit.
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�4D
1 :

θ3 ∧ θ3 = 0

θ3 ∧ θ4 = −2z+ 1

z+ 1
θ4 ∧ θ3+ z

z+ 1
θ1 ∧ θ3

θ3 ∧ θ1 = − 1

z+ 1
θ1 ∧ θ3− z

z+ 1
θ4 ∧ θ3

θ3 ∧ θ2 = −θ2 ∧ θ3+ (h+ g)θ1 ∧ θ3− (h+ g)θ4 ∧ θ3

θ4 ∧ θ4 = z

z+ 1
θ2 ∧ θ3− z(h+ g)

z+ 1
θ1 ∧ θ3+ z(h+ g)

z+ 1
θ4 ∧ θ3 (96)

θ4 ∧ θ1 = −θ1 ∧ θ4− z(h+ g)
z+ 1

θ1 ∧ θ3+ z(h+ g)
z+ 1

θ4 ∧ θ3

θ4 ∧ θ2 = −2z+ 1

z+ 1
θ2 ∧ θ4+ z

z+ 1
θ2 ∧ θ1+ (2z+ 1)(h+ g)

z+ 1
θ2 ∧ θ3− (h+ g)2θ1 ∧ θ3

+(h+ g)2θ4 ∧ θ3

θ1 ∧ θ1 = − z

z+ 1
θ2 ∧ θ3

θ1 ∧ θ2 = − 1

z+ 1
θ2 ∧ θ1− z

z+ 1
θ2 ∧ θ4− (h+ g)

z+ 1
θ2 ∧ θ3

θ2 ∧ θ2 = (h+ g)θ1 ∧ θ2− (h+ g)θ2 ∧ θ4+ (h+ g)2θ2 ∧ θ3

�4D
2 :

θ3 ∧ θ3 = 0

θ3 ∧ θ4 = −θ4 ∧ θ3

θ3 ∧ θ1 = −θ1 ∧ θ3

θ3 ∧ θ2 = −θ2 ∧ θ3+ (h+ g)θ1 ∧ θ3− (h+ g)θ4 ∧ θ3

θ4 ∧ θ4 = 0

θ4 ∧ θ1 = −θ1 ∧ θ4 (97)

θ4 ∧ θ2 = −θ2 ∧ θ4+ (h+ g)θ2 ∧ θ3− (h+ g)2θ1 ∧ θ3+ (h+ g)2θ4 ∧ θ3

θ1 ∧ θ1 = 0

θ1 ∧ θ2 = −θ2 ∧ θ1− (h+ g)θ2 ∧ θ3

θ2 ∧ θ2 = (h+ g)θ1 ∧ θ2− (h+ g)θ2 ∧ θ4+ (h+ g)2θ2 ∧ θ3

�4D
3 :

θ3 ∧ θ3 = 0

θ3 ∧ θ4 = −θ4 ∧ θ3

θ3 ∧ θ1 = −θ1 ∧ θ3

θ3 ∧ θ2 = −θ2 ∧ θ3+ (h+ g)θ1 ∧ θ3− (h+ g)θ4 ∧ θ3

θ4 ∧ θ4 = 0

θ4 ∧ θ1 = −θ1 ∧ θ4 (98)

θ4 ∧ θ2 = −θ2 ∧ θ4+ (h+ g)θ2 ∧ θ3− (h+ g)2θ1 ∧ θ3+ (h+ g)2θ4 ∧ θ3

θ1 ∧ θ1 = 0

θ1 ∧ θ2 = −θ2 ∧ θ1− (h+ g)θ2 ∧ θ3

θ2 ∧ θ2 = (h+ g)θ1 ∧ θ2− (h+ g)θ2 ∧ θ4+ (h+ g)2θ2 ∧ θ3.
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The relations in each case are consistent with the respective relations (72). They are also
consistent with relation (80) and in the case of�4D

1 , the relations (82). Further, they are
such that{θα2 θβ1 θγ4 θδ3 : α, β, γ, δ ∈ {0, 1}} is a basis for the exterior algebra of forms in each
case.

Proof. Once again we used REDUCE to check these results based on the discussion of
section 4. The 16 equations (79) were treated, in each of the cases,04D

1 , 04D
2 and 04D

3
linear relations between the 10 ‘mis-ordered’ two-forms,θ3 ∧ θ3, θ3 ∧ θ4, θ3 ∧ θ1, θ3 ∧ θ2,
θ4∧ θ4, θ4∧ θ1, θ4∧ θ2, θ1∧ θ1, θ1∧ θ2 andθ2∧ θ2, and the six ‘ordered’ two-forms,θ2∧ θ1,
θ2∧ θ4, θ2∧ θ3, θ1∧ θ4, θ1∧ θ3 andθ4∧ θ3. These linear relations were then solved for the
10 mis-ordered two-forms yielding in each case the single solution presented. Consistency
with the relations (72) in each of the three cases was checked by commuting the generators
through the relations and observing that no further conditions were incurred. The other
consistency conditions were again checked by direct computation. Finally, observing that
the relations are compatible with the orderingθ2 ≺ θ1 ≺ θ4 ≺ θ3, we may use the diamond
lemma to prove the statement about the bases. �

Remark 5.6.It is interesting to note here that the relations in04D
2 and04D

3 are the same and
indeed could be obtained from those in04D

1 by settingz = 0.

Remark 5.7.In contrast with the results in theorem 5.5, in the work of Müller-Hoissen and
Reuten onGLq,p(2) [26] the corresponding commutation relations between left-invariant
forms exhibited ordering circles which introduced further constraints on the free parameter
of their family of calculi.

Let us now describe the quantum Lie brackets in the quantum Lie algebrasL4D
1 , L4D

2
andL4D

3 dual to the bicovariant bimodules04D
1 , 04D

2 and04D
3 respectively.

Theorem 5.8.The quantum Lie brackets and quantum commutators for the quantum Lie
algebrasL4D

1 , L4D
2 andL4D

3 as described in section 3 are as follows.
L4D

1 : The bracket relations are,

[χ1, χ1] = 0

[χ1, χ2] = 1

z+ 1
χ2

[χ1, χ3] = − 1

z+ 1
χ3+ h+ g

z+ 1
χ4

[χ1, χ4] = 0

[χ2, χ1] = − 1

z+ 1
χ2

[χ2, χ2] = 0

[χ2, χ3] = 1

z+ 1
χ1− h+ g

z+ 1
χ2− 1

z+ 1
χ4

[χ2, χ4] = 1

z+ 1
χ2

[χ3, χ1] = −h+ g
z+ 1

χ1+ 1

z+ 1
χ3 (99)

[χ3, χ2] = − 1

z+ 1
χ1− h+ g

z+ 1
χ2+ 1

z+ 1
χ4
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[χ3, χ3] = (h+ g)2
z+ 1

χ1− 2
h+ g
z+ 1

χ3+ (h+ g)
2

z+ 1
χ4

[χ3, χ4] = h+ g
z+ 1

χ1− 1

z+ 1
χ3

[χ4, χ1] = 0

[χ4, χ2] = − 1

z+ 1
χ2

[χ4, χ3] = 1

z+ 1
χ3− h+ g

z+ 1
χ4

[χ4, χ4] = 0

and the commutators are

[χ1, χ1] = 0

[χ1, χ2] = χ1χ2−
(

z

z+ 1
χ1χ2+ χ2χ1+ (h+ g)χ2χ2+ z

z+ 1
χ4χ2

)
[χ1, χ3] = χ1χ3−

(
z

z+ 1
χ1χ3+ z(h+ g)

z+ 1
χ1χ4+ χ3χ1− (h+ g)χ3χ2+ (h+ g)2χ4χ2

− z

z+ 1
χ4χ3+ z(h+ g)

z+ 1
χ4χ4

)
[χ1, χ4] = χ1χ4− χ4χ1

[χ2, χ1] = χ2χ1−
(

1

z+ 1
χ1χ2− (h+ g)χ2χ2− z

z+ 1
χ4χ2

)
[χ2, χ2] = 0

[χ2, χ3] = χ2χ3−
(

z

z+ 1
χ1χ1+ h+ g

z+ 1
χ1χ2− z

z+ 1
χ1χ4− (h+ g)2χ2χ2+ χ3χ2

+ z

z+ 1
χ4χ1− (h+ g)(2z+ 1)

z+ 1
χ4χ2− z

z+ 1
χ4χ4

)
[χ2, χ4] = χ2χ4−

(
z

z+ 1
χ1χ2+ (h+ g)χ2χ2+ 2z+ 1

z+ 1
χ4χ2

)
[χ3, χ1] = χ3χ1−

(
− z(h+ g)

z+ 1
χ1χ1+ 2z+ 1

z+ 1
χ1χ3− (h+ g)2χ2χ1+ (h+ g)χ2χ3

−z(h+ g)
z+ 1

χ4χ1+ z

z+ 1
χ4χ3

)
[χ3, χ2] = χ3χ2−

(
− z

z+ 1
χ1χ1− z(h+ g)

z+ 1
χ1χ2+ z

z+ 1
χ1χ4− (h+ g)χ2χ1

−(h+ g)2χ2χ2+ χ2χ3+ (h+ g)χ2χ4− z

z+ 1
χ4χ1 (100)

−z(h+ g)
z+ 1

χ4χ2+ z

z+ 1
χ4χ4

)
[χ3, χ3] = χ3χ3−

(
z(h+ g)2
z+ 1

χ1χ1− (h+ g)(3z+ 1)

z+ 1
χ1χ3+ (h+ g)

2(2z+ 1)

z+ 1
χ1χ4

+(h+ g)3χ2χ1− (h+ g)2χ2χ3+ (h+ g)χ3χ1− (h+ g)2χ3χ2+ χ3χ3

−(h+ g)χ3χ4− (h+ g)
2

z+ 1
χ4χ1+ (h+ g)3χ4χ2− (h+ g)(z− 1)

z+ 1
χ4χ3
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+z(h+ g)
2

z+ 1
χ4χ4

)
[χ3, χ4] = χ3χ4−

(
z(h+ g)
z+ 1

χ1χ1− z

z+ 1
χ1χ3+ (h+ g)2χ2χ1− (h+ g)χ2χ3

+z(h+ g)
z+ 1

χ4χ1+ 1

z+ 1
χ4χ3

)
[χ4, χ1] = χ4χ1− χ1χ4

[χ4, χ2] = χ4χ2−
(
− z

z+ 1
χ1χ2− (h+ g)χ2χ2+ χ2χ4− z

z+ 1
χ4χ2

)
[χ4, χ3] = χ4χ3−

(
z

z+ 1
χ1χ3− z(h+ g)

z+ 1
χ1χ4+ (h+ g)χ3χ2+ χ3χ4− (h+ g)2χ4χ2

+ z

z+ 1
χ4χ3− z(h+ g)

z+ 1
χ4χ4

)
[χ4, χ4] = 0.

L4D
2 : The bracket relations are,

[χ1, χ1] = zχ1− zχ4

[χ1, χ2] = χ2

[χ1, χ3] = z(h+ g)χ1− χ3− (z− 1)(h+ g)χ4

[χ1, χ4] = zχ1− zχ4

[χ2, χ1] = (2z− 1)χ2

[χ2, χ2] = 0

[χ2, χ3] = χ1+ (2z− 1)(h+ g)χ2− χ4

[χ2, χ4] = (2z+ 1)χ2

[χ3, χ1] = −(z+ 1)(h+ g)χ1+ (2z+ 1)χ3− z(h+ g)χ4 (101)

[χ3, χ2] = −χ1− (h+ g)χ2+ χ4

[χ3, χ3] = −(z− 1)(h+ g)2χ1+ 2(z− 1)(h+ g)χ3− (z− 1)(h+ g)2χ4

[χ3, χ4] = −(z− 1)(h+ g)χ1+ (2z− 1)χ3− z(h+ g)χ4

[χ4, χ1] = −zχ1+ zχ4

[χ4, χ2] = −χ2

[χ4, χ3] = −z(h+ g)χ1+ χ3+ (z− 1)(h+ g)χ4

[χ4, χ4] = −zχ1+ zχ4

and the commutators are,

[χ1, χ1] = χ1χ1− (χ1χ1+ z(h+ g)χ2χ1− zχ2χ3+ zχ3χ2− z(h+ g)χ4χ2)

[χ1, χ2] = χ1χ2− (χ2χ1+ (h+ g)χ2χ2)

[χ1, χ3] = χ1χ3− (z(h+ g)2χ2χ1− z(h+ g)χ2χ3+ χ3χ1+ (h+ g)(z− 1)χ3χ2

−(h+ g)2(z− 1)χ4χ2)

[χ1, χ4] = χ1χ4− (z(h+ g)χ2χ1− zχ2χ3+ zχ3χ2+ χ4χ1− z(h+ g)χ4χ2)

[χ2, χ1] = χ2χ1− (−(z− 1)χ1χ2+ zχ2χ1+ (h+ g)(2z− 1)χ2χ2− zχ2χ4

+zχ4χ2)

[χ2, χ2] = 0
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[χ2, χ3] = χ2χ3− (−(h+ g)(z− 1)χ1χ2+ z(h+ g)χ2χ1+ (h+ g)2(2z− 1)χ2χ2

−z(h+ g)χ2χ4+ χ3χ2+ (h+ g)(z− 1)χ4χ2)

[χ2, χ4] = χ2χ4− (−zχ1χ2+ zχ2χ1+ (h+ g)(2z+ 1)χ2χ2− zχ2χ4+ (z+ 1)χ4χ2)

[χ3, χ1] = χ3χ1− ((z+ 1)χ1χ3− z(h+ g)χ1χ4− (h+ g)2(z+ 1)χ2χ1

+(h+ g)(z+ 1)χ2χ3− zχ3χ1+ z(h+ g)χ3χ2+ zχ3χ4+ z(h+ g)χ4χ1

−z(h+ g)2χ4χ2− zχ4χ3)

[χ3, χ2] = χ3χ2− (−(h+ g)χ2χ1− (h+ g)2χ2χ2+ χ2χ3+ (h+ g)χ2χ4) (102)

[χ3, χ3] = χ3χ3− ((h+ g)(z− 1)χ1χ3− (h+ g)2(z− 1)χ1χ4− (h+ g)3(z− 1)χ2χ1

+(h+ g)2(z− 1)χ2χ3− (h+ g)(z− 1)χ3χ1+ (h+ g)2(z− 1)χ3χ2

+χ3χ3+ (h+ g)(z− 1)χ3χ4+ (h+ g)2(z− 1)χ4χ1

−(h+ g)3(z− 1)χ4χ2− (h+ g)(z− 1)χ4χ3)

[χ3, χ4] = χ3χ4− (zχ1χ3− z(h+ g)χ1χ4− (h+ g)2(z− 1)χ2χ1+ (h+ g)(z− 1)χ2χ3

−zχ3χ1+ z(h+ g)χ3χ2+ zχ3χ4+ z(h+ g)χ4χ1− z(h+ g)2χ4χ2

−(z− 1)χ4χ3)

[χ4, χ1] = χ4χ1− (χ1χ4− z(h+ g)χ2χ1+ zχ2χ3− zχ3χ2+ z(h+ g)χ4χ2)

[χ4, χ2] = χ4χ2− (−(h+ g)χ2χ2+ χ2χ4)

[χ4, χ3] = χ4χ3− (−z(h+ g)2+ z(h+ g)χ2χ3− (h+ g)(z− 1)χ3χ2+ χ3χ4

+(h+ g)2(z− 1)χ4χ2)

[χ4, χ4] = χ4χ4− (−z(h+ g)χ2χ1+ zχ2χ3− zχ3χ2+ z(h+ g)χ4χ2+ χ4χ4).

L4D
3 : The bracket relations are,

[χ1, χ1] = 0

[χ1, χ2] = χ2

[χ1, χ3] = −χ3+ (h+ g)χ4

[χ1, χ4] = 0

[χ2, χ1] = −χ2

[χ2, χ2] = 0

[χ2, χ3] = χ1− (h+ g)χ2− χ4

[χ2, χ4] = χ2 (103)

[χ3, χ1] = −(h+ g)χ1+ χ3

[χ3, χ2] = −χ1− (h+ g)χ2+ χ4

[χ3, χ3] = (h+ g)2χ1− 2(h+ g)χ3+ (h+ g)2χ4

[χ3, χ4] = (h+ g)χ1− χ3

[χ4, χ1] = 0

[χ4, χ2] = −χ2

[χ4, χ3] = χ3− (h+ g)χ4

[χ4, χ4] = 0

and the commutators are,

[χ1, χ1] = 0

[χ1, χ2] = χ1χ2− (χ2χ1+ (h+ g)χ2χ2)
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[χ1, χ3] = χ1χ3− (χ3χ1− (h+ g)χ3χ2+ (h+ g)2χ4χ2)

[χ1, χ4] = 0

[χ2, χ1] = χ2χ1− (χ1χ2− (h+ g)χ2χ2)

[χ2, χ2] = 0

[χ2, χ3] = χ2χ3− ((h+ g)χ1χ2− (h+ g)2χ2χ2+ χ3χ2− (h+ g)χ4χ2)

[χ2, χ4] = χ2χ4− ((h+ g)χ2χ2+ χ4χ2)

[χ3, χ1] = χ3χ1− (χ1χ3− (h+ g)2χ2χ1+ (h+ g)χ2χ3)

[χ3, χ2] = χ3χ2− (−(h+ g)χ2χ1− (h+ g)2χ2χ2+ χ2χ3+ (h+ g)χ2χ4) (104)

[χ3, χ3] = χ3χ3− (−(h+ g)χ1χ3+ (h+ g)2χ1χ4+ (h+ g)3χ2χ1− (h+ g)2χ2χ3

+(h+ g)χ3χ1− (h+ g)2χ3χ2+ χ3χ3− (h+ g)χ3χ4− (h+ g)2χ4χ1

+(h+ g)3χ4χ2+ (h+ g)χ4χ3)

[χ3, χ4] = χ3χ4− ((h+ g)2χ2χ1− (h+ g)χ2χ3+ χ4χ3)

[χ4, χ1] = 0

[χ4, χ2] = χ4χ2− (−(h+ g)χ2χ2+ χ2χ4)

[χ4, χ3] = χ4χ3− ((h+ g)χ3χ2+ χ3χ4− (h+ g)2χ4χ2)

[χ4, χ4] = 0.

The following result reveals that the relations in the universal enveloping algebras
U(L4D

1 ), U(L4D
2 ) andU(L4D

3 ) reflect the structure of the commutation relations of the left-
invariant forms presented in theorem 5.5. Indeed the relations inU(L4D

2 ) andU(L4D
3 ) are

identical and can be obtained from those inU(L4D
1 ) by settingz = 0

Theorem 5.9.The relations in the universal enveloping algebras,U(L4D
1 ), U(L4D

2 ) and
U(L4D

3 ) are as follows.
U(L4D

1 ):

χ3χ4 = z(h+ g)
z+ 1

χ2
1 + (h+ g)2χ2χ1− (h+ g)χ2χ3+ z(h+ g)

z+ 1
χ1χ4− z

z+ 1
χ1χ3

+ 1

z+ 1
χ4χ3+ h+ g

z+ 1
χ1− 1

z+ 1
χ3

χ3χ1 = −z(h+ g)
z+ 1

χ2
1 − (h+ g)2χ2χ1+ (h+ g)χ2χ3− z(h+ g)

z+ 1
χ1χ4+ 2z+ 1

z+ 1
χ1χ3

+ z

z+ 1
χ4χ3− h+ g

z+ 1
χ1+ 1

z+ 1
χ3

χ3χ2 = z

z+ 1
χ2

4 −
z

z+ 1
χ2

1 − (h+ g)2χ2
2 −

(2z+ 1)(h+ g)
z+ 1

χ2χ1 (105)

+h+ g
z+ 1

χ2χ4+ χ2χ3− 1

z+ 1
χ1− h+ g

z+ 1
χ2+ 1

z+ 1
χ4

χ4χ1 = χ1χ4

χ4χ2 = −(h+ g)χ2
2 −

z

z+ 1
χ2χ1+ 1

z+ 1
χ2χ4− 1

z+ 1
χ2

χ1χ2 = (h+ g)χ2
2 +

2z+ 1

z+ 1
χ2χ1+ z

z+ 1
χ2χ4+ 1

z+ 1
χ2.
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U(L4D
2 ):

χ3χ4 = (h+ g)2χ2χ1− (h+ g)χ2χ3+ χ4χ3+ (h+ g)χ1− χ3

χ3χ1 = −(h+ g)2χ2χ1+ (h+ g)χ2χ3+ χ1χ3− (h+ g)χ1+ χ3

χ3χ2 = −(h+ g)2χ2
2 − (h+ g)χ2χ1+ (h+ g)χ2χ4+ χ2χ3− χ1− (h+ g)χ2+ χ4

χ4χ1 = χ1χ4

χ4χ2 = −(h+ g)χ2
2 + χ2χ4− χ2

χ1χ2 = (h+ g)χ2
2 + χ2χ1+ χ2.

(106)

U(L4D
3 ):

χ3χ4 = (h+ g)2χ2χ1− (h+ g)χ2χ3+ χ4χ3+ (h+ g)χ1− χ3

χ3χ1 = −(h+ g)2χ2χ1+ (h+ g)χ2χ3+ χ1χ3− (h+ g)χ1+ χ3

χ3χ2 = −(h+ g)2χ2
2 − (h+ g)χ2χ1+ (h+ g)χ2χ4+ χ2χ3− χ1− (h+ g)χ2+ χ4

χ4χ1 = χ1χ4

χ4χ2 = −(h+ g)χ2
2 + χ2χ4− χ2

χ1χ2 = (h+ g)χ2
2 + χ2χ1+ χ2.

(107)

In each case the relations are such that{χα2 χβ1 χγ4 χδ2 : α, β, γ, δ ∈ Z>0} is a basis of the
enveloping algebra.

Proof. These relations are obtained by solving the 16 equationsχiχk =∑
s,t=1...d 3st,ikχsχt +

∑
j=1...d Cik,jχj for the six quadratic elementsχ3χ4, χ3χ1, χ3χ2,

χ4χ1, χ4χ2 andχ1χ2. It is then observed that the relations are compatible with the ordering
χ2 ≺ χ1 ≺ χ4 ≺ χ3 so the diamond lemma may be applied to obtain the stated basis.�

6. Three-dimensional bicovariant differential calculi onSLh(2)

Classically (see for example the discussion in the book by Flanders [42]) we obtain the
differential calculus onSL(2) from the calculus onGL(2) through the classical relation,

dD = D Tr2c (108)

where2c is the classical matrix of left-invariant one-forms.SL(2) and its differential
calculus is obtained by settingD = 1, so the left-hand side becomes zero and we obtain a
linear relation between the classical left-invariant one-forms, namely,θ1 + θ4 = 0. In the
standard quantumGLq(2) case this procedure isnot possible. The analogue of (108) in
this case is rendered trivial by the condition thatD be central in the first-order calculus.
More precisely, we have in this case

dD = κD Trq 2 (109)

where Trq 2 is now theq-analogue of Tr2, θ1 + q−1θ4. But now, imposing the condition
D = 1, immediately fixesκ = 0 so we have no chance of reducing the dimension of the
calculus. There are of course four-dimensional bicovariant calculi on the standard quantum
groupSLq(2) but no three-dimensional calculi.

In our case, with the nonstandard Jordanian quantum group, the situation is quite
different. Studying theorem 5.1 we see that for the calculi04D

1 and 04D
3 we can indeed
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have the quantum determinant centraland obtain a dimension-reducing relation through the
analogue in these cases of (108),

dD = z+ 2

2
D Trh 2. (110)

The quantum determinant is central in04D
1 and 04D

3 if and only if the parameterz
takes the value 0 or−2. With z = −2 we obtain in each case a four-dimensional
calculus onSLh(2), while with z = 0 the condition dD = 0 yields the linear relation
Trh 2 = θ1+ 2hθ3+ θ4 = 0—precisely the relation (70) we obtained when we investigated
the general implications of choosing a three-dimensional basis of0inv. Moreover,z = 0 is
the value ofz at which04D

1 , 04D
2 and04D

3 coincide, so is already covered as a particular
case in04D

2 . For this first-order calculus, having setg = h, the quantum determinant is
central forall values ofz. In the particular case ofz = 2

3, the differential of the quantum
determinant is identically zero so that once again we obtain a four-dimensional calculus on
SLh(2). However, for all other values ofz we recover the condition Trh 2 = 0. At first
sight then, it may seem that there is a family of three-dimensional calculi onSLh(2), but
this is not the case.

Theorem 6.1.There is a unique, three-dimensional, first-order bicovariant differential
calculus on the Jordanian quantum groupSLh(2), 03D. It may be obtained from any
one of the three families of first-order bicovariant differential calculi onGLh,g(2) by a
reduction analogous to the classical situation. It is specified by itsABCD matrices,

A =
( 1 0 −h

2h 1 h2

0 0 1

)
B =

( 0 0 2h2

0 2h −2h3

0 0 −2h

)

C =
( 0 0 0

0 0 0
0 0 0

)
D =

( 1 0 h

−2h 1 −3h2

0 0 1

)
.

(111)

Proof. As far as obtaining this calculus from theGLh,g(2) calculi is concerned, we need
only observe that starting with the 4× 4 ABCD matrices of04D

3 , say, in relations (72) and
settingθ4 = −θ1−2hθ3, we obtain commutation relations now involving the 3×3 matrices
quoted. That this is the unique three-dimensional calculus onSLh(2) follows since these
are precisely theABCD matrices we obtain when we apply the procedure of section 4 to
look for the most general possible three-dimensional calculus onSLh(2). �

Now, just as we did for the four-dimensional calculi, we may deduce wedge product
commutation relations in the exterior bicovariant graded algebra�3D, the Lie brackets and
commutators for the quantum Lie algebraL3D, and the enveloping algebra relations for
U(L3D). These results are obtained in just the same way as the corresponding results for
the four-dimensional calculi so we will not comment on their proofs. We should mention
that some results in this direction have already been obtained in [34], where the first-
order differential calculus onSLh(2) was postulated through theR-matrix expression (93).
However, the results we present here are more complete than the corresponding results
in [34]. Also, it will be useful to collect the results here in our current notation.
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Theorem 6.2.The commutation relations between the left-invariant forms in the external
bicovariant graded algebra,�3D, built upon the first-order calculus03D, are

θ3 ∧ θ3 = 0

θ3 ∧ θ1 = −θ1 ∧ θ3

θ3 ∧ θ2 = −θ2 ∧ θ3+ 4hθ1 ∧ θ3

θ1 ∧ θ1 = 0

θ1 ∧ θ2 = −θ2 ∧ θ1− 2hθ2 ∧ θ3

θ2 ∧ θ2 = 4hθ2 ∧ θ1+ 8h2θ2 ∧ θ3.

(112)

The relations are such that{θα2 θβ1 θγ3 : α, β, γ ∈ {0, 1}} is a basis for the exterior algebra
of forms.

Theorem 6.3.The quantum Lie brackets and commutators for the quantum Lie algebraL3D,
are respectively,

[χ1, χ1] = 0

[χ1, χ2] = 2χ2

[χ1, χ3] = −2χ3

[χ2, χ1] = −2χ2

[χ2, χ2] = 0

[χ2, χ3] = χ1− 4hχ2

[χ3, χ1] = −4hχ1+ 2χ3

[χ3, χ2] = −χ1

[χ3, χ3] = −4hχ3

(113)

and

[χ1, χ1] = 0

[χ1, χ2] = χ1χ2− (χ2χ1+ 4hχ2χ2)

[χ1, χ3] = χ1χ3− (χ3χ1− 4hχ3χ2)

[χ2, χ1] = χ2χ1− (χ1χ2− 4hχ2χ2)

[χ2, χ2] = 0

[χ2, χ3] = χ2χ3− (2hχ1χ2− 8h2χ2χ2+ χ3χ2)

[χ3, χ1] = χ3χ1− (χ1χ3− 8h2χ2χ1+ 4hχ2χ3)

[χ3, χ2] = χ3χ2− (−2hχ2χ1+ χ2χ3)

[χ3, χ3] = χ3χ3− (−2hχ1χ3+ 2hχ3χ1− 8h2χ3χ2+ χ3χ3).

(114)

Theorem 6.4.The relations in the enveloping algebra,U(L3D), are,

χ3χ1 = −8h2χ2χ1+ 4hχ2χ3+ χ1χ3− 4hχ1+ 2χ3

χ3χ2 = −2hχ2χ1+ χ2χ3− χ1

χ1χ2 = 4hχ2
2 + χ2χ1+ 2χ2.

(115)

These relations are such that{χα2 χβ1 χγ3 : α, β, γ ∈ Z>0} is a basis forU(L3D).
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7. The Jordanian quantized universal enveloping algebra

So far we have been working only with the Jordanian quantum analogue of the coordinate
ring of SL2(C). In what follows we focus attention on the corresponding deformation of
the universal enveloping algebraU(sl2(C)). Let us recall its definition.

Definition 7.1.The Jordanian quantized universal enveloping algebra, Uh(sl2(C)), is the
unital associative algebra overC[[h]] with generatorsX, Y , H and relations

[H,X] = 2
sinhhX

h
(116)

[H, Y ] = −Y (coshhX)− (coshhX)Y (117)

[X, Y ] = H (118)

having a basis{YαHβXγ : α, β, γ ∈ Z>0}.
In [51] the Casimir element,C, of Uh(sl2(C)) was obtained, in our notation it is

C = (Y (sinhhX)+ (sinhhX)Y )+ 1
4H

2+ 1
4(sinhhX)2. (119)

Assuming tensor products to be completed in theh-adic topology, the Hopf structure
of Uh(sl2(C)) is defined on the generators as,

1(X) = X ⊗ 1+ 1⊗X (120)

1(Y) = Y ⊗ ehX + e−hX ⊗ Y (121)

1(H) = H ⊗ ehX + e−hX ⊗H (122)

ε(X) = 0 ε(Y ) = 0 ε(H) = 0 (123)

S(X) = −X S(Y ) = −ehXYe−hX S(H) = −ehXHe−hX. (124)

It is clear that the elementu = e2hX is such thatS2(x) = uxu−1 for all x ∈ Uh(sl2(C))
and1(u) = u⊗ u.

Uh(sl2(C)) has received a good deal of attention recently. In particular, we mention the
work of Abdesselamet al [20] in which a nonlinear map was constructed which realizes
the algebraic isomorphism betweenUh(sl2(C)) andU(sl2(C)). This map was then used
by those authors to build the representation theory ofUh(sl2(C)). As with the standard
quantization of the enveloping algebra ofsl2(C), the representation theory ofUh(sl2(C))
follows the representation theory ofsl2(C) very closely. Indeed, the finite-dimensional,
indecomposable representations ofUh(sl2(C)) are in one-to-one correpondence with the
finite-dimensional irreducible representations ofsl2(C), and can be classified classically
by a non-negative half-integerj . Van der Jeugt [21] was able to refine the work of
Abdesselamet al, obtaining closed-form expressions for the action of the generators of
Uh(sl2(C)) on the basis vectors of finite dimensional irreducible representations. Before
Van der Jeugt’s work Aizawa [52] had demonstrated that the Clebsch–Gordan series for the
decomposition of the tensor product of two indecomposable representations ofUh(sl2(C))
was precisely the classical series modulo the one-to-one correspondence of classical and
Jordanian representations. Van der Jeugt obtained a general formula for the Clebsch–Gordan
coefficients.

8. Jordanian quantum Lie algebra from an ad-submodule inUh(sl2(C))

In the following theorem we describe a left ad-submodule ofUh(sl2(C)) which allows us
to build a quantum Lie algebra from the enveloping algebra generators.
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Theorem 8.1.In Uh(sl2(C)) the space spanned by the elementsXh, Hh andYh defined by

Xh = ehX
sinhhX

h

Hh = HehX

Yh = YehX − 2hC

(125)

is stable under the left-adjoint action ofUh(sl2(C)) on Uh(sl2(C)).

Proof. To obtain this result, essential use was made of the known PBW basis. With
such a basis we can use the computer algebra package REDUCE to perform algebraic
manipulations which would be virtually impossible otherwise. In particular, we obtain the
following actions of theUh(sl2(C)) generators on the elements{Xh,Hh, Yh} describing a
deformation of the adjoint representation ofU(sl2(C)),
X FXh = 0 H FXh = 2Xh Y FXh = −Hh + 2hXh

X FHh = −2Xh H FHh = 4hXh Y FHh = 2Yh + 3h2Xh

X F Yh = Hh H F Yh = −2Yh − 2hHh − h2Xh

Y F Yh = −2hYh − h2Hh − h3Xh.

(126)

�

The actions of the elements on each other leads to the followingJordanian quantum
Lie bracketsbetween the elements of theJordanian quantum Lie algebraLh(sl2(C)),
[Xh,Xh] = 0 [Xh,Hh] = −2Xh [Xh, Yh] = Hh − 2hXh

[Hh,Xh] = 2Xh, [Hh,Hh] = 0 [Hh, Yh] = −2Yh − 2hHh + h2Xh

[Yh,Xh] = −Hh − 2hXh [Yh,Hh] = 2Yh − 2hHh − h2Xh [Yh, Yh] = −4hYh

(127)

which display the characteristich-antisymmetry [45]. TheUh(sl2(C)) coproduct on the
elements ofLh(sl2(C)) is,

1(Xh) = 1⊗Xh +Xh ⊗ e2hX

1(Hh) = 1⊗Hh +Hh ⊗ e2hX

1(Yh) = 1⊗ Yh + Yh ⊗ e2hX + 2h(1⊗ C + C ⊗ e2hX −1(C)).
(128)

A standard definition for the quantum Killing form is the following [46].

Definition 8.2.Thequantum Killing formis the mapB : Lh(sl2(C))⊗Lh(sl2(C))→ C[[h]]
given by

B(x, y) = Tr(xyu) (129)

where the trace Tr is taken over the deformed adjoint representation ofUh(sl2(C)) andu is
as defined above.

As explained in [46], the Killing form so-defined is ad-invariant, nondegenerate, bilinear
and satisfies the following simple generalization of the usual symmetry property,

B(x, y) = B(y, S2(x)). (130)

Note that,

S2(Xh) = Xh
S2(Hh) = Hh − 4hXh

S2(Yh) = Yh + 2hHh − 4h2Xh

(131)
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so thatS2 : Lh(sl2(C))→ Lh(sl2(C)).
From the definition it is straightforward to obtain the following evaluations of the

quantum Killing form onLh(sl2(C))

B(Hh,Hh) = 8 B(Hh,Xh) = 0 B(Hh, Yh) = −8h

B(Xh,Hh) = 0 B(Xh,Xh) = 0 B(Xh, Yh) = 4

B(Yh,Hh) = 8h B(Yh,Xh) = 4 B(Yh, Yh) = −6h2

(132)

a simple deformation of the classical Killing form, recovered by settingh = 0.

9. Jordanian quantum Lie algebra from inverse Clebsch–Gordan coefficients

Classically, for finite-dimensional highest weight modulesV3 andV3′ of a complex simple
Lie algebrag, there is a decomposition

V3 ⊗ V3′ ∼= ⊕L3i33′V3i (133)

of the tensor product module into a direct sum of its irreducible submodulesV3i , the non-
negative integersL3i33′ being the Littlewood–Richardson coefficients ofg. The dimension
of the space of intertwiners betweenV3 ⊗ V3′ andV3i is then justL3i33′ . In particular, for
a pair of adjoint representations, ad, ofsl2(C) we have the decomposition

ad⊗ ad∼= W ⊕ ad⊕ ε (134)

whereε is the trivial (one-dimensional) representation andW is the irreducible representation
of dimension five. Therefore, up to rescaling, there is a unique intertwiner from ad⊗ad→ ad
and a unique intertwiner from ad⊗ ad→ ε. Indeed, these are precisely the Lie bracket
and Killing form of sl2(C), respectively. Choosing bases for the modulesW , ad andε,
these intertwiners may then be described explicitly by particular subsets of the inverse
Clebsch–Gordon coefficients corresponding to the isomorphism (134).

We know that the representations ofU(sl2(C)) and Uh(sl2(C)) are in one-to-one
correspondence and that the respective tensor structures of these representations are identical
modulo this correspondence. Therefore ‘quantized’ versions of the Lie bracket and Killing
form may be obtained from the intertwiners of the corresponding deformed modules.
Moreover, by standard theoretical arguments [46] these quantum Lie brackets and Killing
form should be identical to those obtained in the last section, up to rescaling. We therefore
have a convenient check on the results presented there.

Let us adopt the notation of Van der Jeugt [21]. On the representation spaceV
(j)

h with
basisejm wherej in a non-negative half-integer andm = −j,−j + 1, . . . , j , the action of
the generatorsX, H andY is given by [21],

H F ejm = 2mejm

X F ejm =
b(j−m−1)/2c∑

k=0

(h/2)2k

2k + 1

αj,m+1+2k

αj,m
e
j

m+1+2k

Y F ejm = (j +m)(j −m+ 1)
αj,m−1

αj,m
e
j

m−1− (j −m)(j +m+ 1)

(
h

2

)2
αj,m+1

αj,m
e
j

m+1 (135)

+
b(j−m+1)/2c∑

s=1

(
h

2

)2s
αj,m−1+2s

αj,m
e
j

m−1+2s
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whereαj,m =
√
(j +m)!/(j −m)!. Thus the representation matrices of the generators in

the deformation of the classical adjoint,j = 1, representation are,

0(X) =
( 0

√
2 0

0 0
√

2
0 0 0

)
0(H) =

( 2 0 0
0 0 0
0 0 −2

)

0(Y ) =
( 0 −√2(h/2)2 0√

2 0 −√2(h/2)2

0
√

2 0

)
.

(136)

The Clebsch–Gordan series for the tensor product of twoV 1
h representations is,

V 1
h ⊗ V 1

h
∼= V 2

h ⊕ V 1
h ⊕ V 0

h . (137)

If we denote byvi the ith vector in the ordered basis{e2
2, e

2
1, e

2
0, e

2
−1, e

2
−2, e

1
1, e

1
0, e

1
−1, e

0
0}

and bywi the ith vector in the ordered basis{e1
1 ⊗ e1

1, e
1
1 ⊗ e1

0, e
1
1 ⊗ e1

−1, e
1
0 ⊗ e1

1, e
1
0 ⊗

e1
0, e

1
0 ⊗ e1

−1, e
1
−1 ⊗ e1

1, e
1
−1 ⊗ e1

0, e
1
−1 ⊗ e1

−1}, then the Clebsch–Gordan matrixC, where

vi =
∑9
j=1Cijwj is given by [21]

C =



1 0 0 0 0 0 0 0 0
0 1√

2
0 1√

2
0 0 0 0 0

√
2h2

2
√

3
−h√

3
1√
6

h√
3

2√
6

0 1√
6

0 0

0
√

2h2

2 −h
√

2h2

2 0 1√
2

h 1√
2

0
−h4

4
−√2h3

2
3h2

2

√
2h3

2 0 −√2h 3h2

2

√
2h 1

−2h 1√
2

0 −1√
2

0 0 0 0 0

0 −h 1√
2
−h 0 0 −1√

2
0 0

0
√

2h2

2 −h −√2h2

2 0 1√
2

−h −1√
2

0
h2√

3
−√2h√

3
1√
3

√
2h√
3

−1√
3

0 1√
3

0 0


(138)

with inverse

C−1 =



1 0 0 0 0 0 0 0 0√
2h

√
2

2 0 0 0
√

2
2 0 0 0

3h2

2 h
√

6
6 0 0 h

√
2

2 0
√

3
3

−√2h
√

2
2 0 0 0 −√2

2 0 0 0

0 0
√

6
3 0 0 0 0 0 −√3

3√
2h3

2

√
2h2

2

√
3h
3

√
2

2 0
√

2h2

2 h
√

2
2

√
6h
3

3h2

2 −h
√

6
6 0 0 h −√2

2 0
√

3
3

−√2h3

2

√
2h2

2
−√3h

3

√
2

2 0 −√2h2

2 h −√2
2

−√6h
3

−h4

4 0
√

6h2

6 0 1 0 0 2h
√

3h2

3


. (139)
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Consideringwi =
∑9
j=1C

−1
ij vj we see that columns 6–8 ofC−1 correspond to an

intertwiner ad⊗ad→ ad and we deduce a quantum Lie bracket on the vectors{e1
1, e

1
0, e

1
−1},

[e1
1, e

1
1] = 0 [e1

1, e
1
0] =

√
2

2
e1

1 [e1
1, e

1
−1] =

√
2

2
e1

0 + he1
1

[e1
0, e

1
1] = −

√
2

2
e1

1 [e1
0, e

1
0] = 0 [e1

0, e
1
−1] =

√
2

2
e1
−1+ he1

0 +
√

2

2
h2e1

1

[e1
−1, e

1
1] = −

√
2

2
e1

0 + he1
1 [e1

−1, e
1
0] = −

√
2

2
e1
−1+ he1

0 −
√

2

2
h2e1

1

[e1
−1, e

1
−1] = 2he1

−1.

(140)

Similarly, column 9 ofC−1 corresponds to an intertwiner ad⊗ ad→ C[[h]] and we obtain
the Killing form

B(e1
0, e

1
0) = −

√
3

3
B(e1

0, e
1
1) = 0 B(e1

0, e
1
−1) =

√
6h

3

B(e1
1, e

1
0) = 0 B(e1

1, e
1
1) = 0 B(e1

1, e
1
−1) =

√
3

3

B(e1
−1, e

1
0) = −

√
6h

3
B(e1

−1, e
1
1) =

√
3

3
B(e1

−1, e
1
−1) =

√
3h2

3
.

(141)

Now, if we perform the following change of basis,

Xh = 2e1
1

Hh = 4he1
1 − 2
√

2e1
0

Yh = −5

2
h2e1

1 + 2
√

2he1
0 − 2e1

−1

(142)

then the representation matrices of the generators become,

0(X) =
( 0 −2 0

0 0 1
0 0 0

)
0(H) =

( 2 4h −h2

0 0 −2h
0 0 −2

)

0(Y ) =
( 2h 3h2 −h3

−1 0 −h2

0 2 −2h

) (143)

which are precisely those obtained from (126) and the Lie bracket relations become (those
already obtained in 127),

[Xh,Xh] = 0 [Xh,Hh] = −2Xh [Xh, Yh] = Hh − 2hXh
[Hh,Xh] = 2Xh, [Hh,Hh] = 0 [Hh, Yh] = −2Yh − 2hHh + h2Xh (144)

[Yh,Xh] = −Hh − 2hXh [Yh,Hh] = 2Yh − 2hHh − h2Xh [Yh, Yh] = −4hYh.

Further, we can scale the Killing form, by scaling the single basis vector ofV 0
h so that on

the {Xh,Hh, Yh} it reads

B(Hh,Hh) = 8 B(Hh,Xh) = 0 B(Hh, Yh) = −8h

B(Xh,Hh) = 0 B(Xh,Xh) = 0 B(Xh, Yh) = 4

B(Yh,Hh) = 8h B(Yh,Xh) = 4 B(Yh, Yh) = −6h2

(145)

precisely as was found above.
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10. Conclusion

Returning to the quantum Lie algebra obtained through Woronowicz’s bicovariant calculus,
L3D, if we change the basis according to the identifications,

Hh = χ1

Xh = χ2 (146)

Yh = −hχ1+ h
2

4
χ2+ χ3

then theWoronowicz quantum Lie bracketon these new basis elements isprecisely that
already found in (127). Thus, as algebras overC[[h]], the Woronowicz and ‘Sudbery–
Delius’ quantum Lie algebras areisomorphic. This means, furthermore, that in addition
to having a Killing form we have some natural analogue of the Jacobi identity for this
Jordanian quantum lie algebra.

We had already found two appealing aspects of the bicovariant differential geometry on
SLh(2). Namely, its uniqueness and three-dimensionality. The fact that the Woronowicz
quantum Lie algebra is isomorphic to the Sudbery–Delius quantum Lie algebra we
found starting withUh(sl2(C)) is a further attractive feature. Recently, the work of
Aghamohammadi [53] and Choet al [54] have shown that the corresponding Jordanian
quantum plane admits a richer geometrical structure than the standard quantum plane. It
should be interesting to try to develop further the geometry on the Jordanian quantum group
and also investigate possibleSL(n) generalizations.
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[35] Schm̈udgen K and Scḧuler A 1996 Left-covariant differential calculi onSLq(2) andSLq(3) J. Geom. Phys.

20 87–105
[36] Faddeev L D and Pyatov P N 1996 The differential calculus on quantum linear groupsAm. Math. Soc. Transl.

Ser. 2175 35–47
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